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Linear dispersion relations for one-dimensional, electromagnetic particle simulation
codes are analyzed in order to determine numerical stability properties. It is found that
fast particles may resonate with light waves of matching phase velocity to produce a
severe numerical instability. A Courant condition for this instability is derived, and
comparison of its restrictiveness made among the various differencing schemes. At least
two algorithms permitting reasonably large time steps for relativistic simulations are
available.

1. INTRODUCTION

Over the past several years the utility of particle-in-cell computer simulation
codes [1] in investigating highly complex plasma physics phenomena has been well
established. Nonetheless, it must be remembered that, due to the approximations
which must be made in a plasma simulation, the results obtained cannot be expected
to reproduce actual plasma behavior in all detail. To quantify differences, various
authors have developed a theory of “computer plasmas™ [2, 3, 4] paralleling the
basic features of ordinary plasma theory, and have performed detailed “computer
experiments” [5, 6] to verify this theory. Such studies have done much to facilitate
the efficient utilization of particle codes and the proper interpretation of their
results.

With but few exceptions [7, 8], this theoretical analysis of particle codes has been
restricted to electrostatic problems. In an attempt to alleviate this deficiency, we
present the analysis of a simple yet significant numerical effect afflicting most
relativistic electromagnetic particle codes. Specifically, we have found in a series of
simulations that a cold, one-species plasma streaming rapidly in a spatially periodic,
standard, one-dimension, electromagnetic particle code {9] gives rise to a rapidly
growing numerical instability. Other simulations indicated that this same instability
can arise in a variety of problems involving relativistic plasmas, including very hot
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stationary Maxwellians. In all cases it is produced by an unphysical resonsnce
between fast particles and electromagnetic waves of maiching phase velecity. Tor
this reason we refer to the effect as a numerical Cherenkov instability.

To better understand this behavior, we here derive and analyze in detail 2 linear
dispersion relation, including all relevant numerical effects, for the simplest case
possibie. that of the cold beam just mentioned. This dispersion relation is
sufficiently general to include most electromagnetic differencing schemes ordinarily
used. Two less conventional schemes, advancing the fields in spatial Fourler-
transformm space and advancing the fields by advective differencing, are also
studied. In all instances we find that, in addition to the usual high freguency ligh
waves, the dispersion relation contains a ballistic {or beaming) mode, spun us in
the sense that it does not exist in the limit of vanishing time step and cell size. i1 is
the intersection of this mode with the light curves which occasions the numerical
Cherenkov instability. On this basis it is sir ugnuors ard to derive a Couran
condition on particle motion. Tt states that, to avoid instability, particles can be
moved no more than some fraction of a grid cell per time step, the precise distance
depending on the differencing scheme used.

Study of the dispersion relation also provides the opportunity to gain added
insight into the more usual Courant condition on the field equations. This is partic-
ularlv fortunate in that the combination of particle and field Courant conditicns

can severely resirict the allowable time step for relativistic simulations, probiems

which in any event are quite expensive in compuier time. A large poriion of this
paper is devated to ilustrating the ways in which reasonable time steps can be
obtained. Our overall conclusion 1s that the numerical Cherenkov instabliity,
while certainiy a nuisance, can be avoided without excessive cost in computer tims
and apparently without undue violence to the physics to be simulated.
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2. THE DIFFERENCING SCEEME

We begin by deriving the linear dispersion relation, including numerical effects,
for a quite versatile but specific one space, three velocity electromagnetic particle
code. Particle positions, charge density and electrostatic scalar potentizl, and
electric and magnetic fields are known at integral time steps; particle velocities,
current density and iransverse vector potential at half-integral times. Fields are
defined at cell edges, while potentials and charge and current densities arz defined
at cell centers (see Fig. 1). Standard area weighting is employed both for deter-
mining charge and current densities from particle vositions and velocities and for
determining the forces on particles from the fields defmed on the {periodic} grid.
All gquantities are advanced using the leapfrog algorithm, space and time centered,
and second-order accurate [I, 2].
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Fic. 1. Spacetime grid for the differencing scheme of Section 2.

Solution for the vector potential incorporates both multiple time steps [10] and
implicit differencing [11]. For the former, the particles are advanced only every
Nth time step (¥ an odd positive integer), so as to save computational time when
treating nonrelativistic particles. Currents computed at the Nth time step are
employed in advancing the vector potential also at the L = (N — 1)/2 time steps
to either side. Typically, &V is either one or three.

Implicit differencing involves modifying the vector potential equation to read

a2
)A:a—;A—#J, )

i , &
g (1 + B dx dx?

where dx is the cell size and B is the implicitness parameter, —co0 << 8 < 0.25.
(Units are chosen such that the plasma frequency and velocity of light each equal
one.)As shown in Section 3, increasing B increases the phase velocity of light waves.
For B < —0.25 (dt/4x)?, At the field time step, there is no Courant condition on
the vector potential equation. Note that this technique can be applied with identical
effect when the electromagnetic fields themselves are integrated forward in time (as
in Ref. [10]):

dldt)(1 + B Ax¥d3dx*))E =V, X B —J, (d/dt)B = —V, X E. )
This decomposition of Eq. (1) is not necessarily unique.

Our derivation of the linearized, Fourier-transformed Vlasov equation proceeds
just as in [2], except that we desire to know the first-order distribution function, f,
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at half-integral rather than at integral times. As a consequence, tangent is replaced
by sine in the usual expression:

f=iF-

s
Lt
e

afo / sinf(w + kv) N4#/2]
v N 412

This substitution represents one significant difference between electrostatic and
electromagnetic dispersion relations. In Eq. (3), F is the total force as felt by the
particles, f° is the zero-order distribution funmon and @ and k are the {requency
and wave number, respectively. Incidentally, even though Eq. (3) strictly is vaiid
only non-relativistically, our final result is equally vaiid (with the usual mass
renormalization) for a relativistic code, because we assume no thermal spread in 2,

For a single cold beam in a charge neutralizing background, it is elementary o
obtain from Eq. (3) the first-order current density.

sin(k 4x/2)

sin(w 4¢/2 ) - )
Sin(w 42) cos(k dx/2} + v e cosle 412 }

12

"

J=-A]

T sin(k 4x/2) 1* /sinf(w + kvy N 4¢/2]
Lk Ax)2 ] / N 412 ‘

This expression ignores spatial aliases [2] as comparatively unimportant for present
purposes. To include them, replace & by & + /&, throughout the secong line of
Eq. (£) and sum on [(k, = 2mjdx, — o0 < [ < ).

Special care must be taken in Fourier transfoerming Eqg. (1), that proper account
is taken of the aliasing due to multiple time steps. The result is

A, F(~——-Si‘§‘;;j i2) )2 (1 — 4Bsinxtk 4x/2)) — ( sin ka 2 ) ]

_ sinflwN d42) & e
= T Wein(w 42y 2, Jerter !

with w, = 27/N At. The N homogeneous equations implicit in (4) and (5} are =asily
solved to yield the desired dispersion relation

; _ (sintk Ax[2) i sinfwN 4/2)
““ram ) L S A

—L

[ sin{wdt/2 -+ Ir[N) cos(kdx/2) -+ (wdt/4x) cos{wdt2 + I N) sin{kdx/2} 7
sinf(w + k) N 41/2]

1 — 4B sin¥(k 4x/2)) — ( sinf{k 4x/2) %y

&

4x)2 J 1 v

11sin{w At -+ Im[N)\?
/ ( At2 ) (

581/15/4-6
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As previously mentioned, this expression is valid both relativistically and non-
relativistically, and could have been obtained equally from Eq. (1) or Eq. (2).

3. CourANT CONDITIONS

A cursory examination of Eq. (6) indicates that it possesses not one but two sets
of roots, corresponding to the high frequency light modes and, additionally, to a
spurious beaming mode. Approximately,

At sin(k 4x/2)
[T — 48 sin®(k Ax/2)]72

| + fe, )

and
o~ — kvt e, . ' (8)

For reasonable accuracy, Eq. (7) requires 4t < 1 < k. If At is much greater than
1.5, the light modes are unstable near k£ = 0. A similar restriction on 4¢, involving
Langmuir waves, occurs in electrostatic simulations J12].

Figure 2 gives the exact solution to Eq. (6), determined numerically, for ¥ = 3,
B=0,v=02,4x = 0.1,and N dr = 0.2, in the range 0 < w <C w,. The complete
solution would consist of 3(;V — 1) additional branches, corresponding to other /
values in (7) and (8). (The simulation particles, with time step N 4t, see the various

35
T T T T T ]
N:=3 B=0 j
v

30 0.2 Not/ax=2.0 |
251
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o] 5 1o 15 20 25 30 35
ke /wp

Fic. 2. Typical numerical solution of Eq. (6). Shown are two light wave and one beam
branches. The two light modes are of different /, so that their intersection is stable.
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time aliases as one.) Figure 3 is the power spectrum for k& = 0.98, taken from a
simulation performed with the parameters of Fig. 2. The three modes of Fig. 2 are
prominent near the center of the diagram. Other modes, at higher frequencies and
much lower intensities, arise from spatial aliases,

| Mode 4 —

10 i 4

o}
w/wP

F1G. 3. Power spectrum for & = 0.98 from an eleciromagnetic particle code simulation;
N=3,8=0=02,4x = 0.1, and Ndr = 0.2. Note the dominant beaming and Jight moces
at w = —0.2 and 4-1.4, respectively.

When branches of (7) and (8) intersect in the ¥ — w plane, one shouid expect
instabilities. There are three distinguishable cases: crossing of light modes with the
same / value, crossing of light modes with different / values, and crossing of a light
mode and a beam mode. To avoid the first possibility, require the argument of the
arcsine i (7) not to exceed unity. Since the argument is largest for & = fnax =
w/dx, we obtain

Ar < Ax(1 — 4BY R, %)

Le., the standard Courant condition, modified by implicit differencing. if this
relation is violated, a well known virulent instability arises. The interseciion of
light branches of different /’s (illustrated in Fig. 2) is, on the other hand, usnally
stable. Moreover, in the few exceptional cases, the instability grows slowly zad is
observed in computer simulations to saturate at an innocuous jevel.

The final case, intersection of a spurious beam mode and a light mode, typically
leads to the powerful numerical Cherenkov instability described in Section 1.
Figure 4 shows a case of such intersections. The associated instability growih raies
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are ~0.5. Computer simulations performed to verify these predictions exhibited
violent instability at the indicated values of k. Resulting energy nonconservation
was severe.

BT T T T 71 —T

30 —
v=0.8 NAl/Ax=2.0

25
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wlug

0 5 0 15 20 25 30 35
ke /wp

Fic. 4. Numerical solution of Eq. (6), illustrating numerical Cherenkov instabilities. Growth
rates are of order 0.5.

Conditions sufficient for stability can be obtained by allowing the modes nearly
to come together at kmax . There are two inequalities of interest, for interaction of
the beam mode with the nearest positive and negative [as defined by the sign in
Eq. (7)] light modes, respectively.

_24x N . opdt o
v < (1 arcsin [ (1 — 4gy2]) (10)
24x . [ 4t 1
v < - arcsin [ZIT (I —48) 1'2] . (1D

It cannot be emphasized too strongly that these relations are only approximate,
and that, in particular, the second inequality is too weak when N > 1 and v == 1.
Subject to this caveat, a second Courant condition can be obtained.

Equations (10) and (11) are most easily simultaneously satisfied when they are
equivalent; i.e., when

arcsin [(dt/dx)(1 — 4B)~1/2] = «/2N. (12)

In this case, one has simply
Ndi < Ax/v. (13)
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Thus, in distinction to electrostatic codes, in electromagnetic codes one cannot
push particles faster than one cell per particle time step. The critical value of the
implicitness parameter defined by Eq. (12) is

B, = 0.25 [1 — (dt/dx sin{=/2N))2]. (14

This is an exacting definition of B,, particularly for N = |, in that deviations
from it of only a few percent may reduce the ailowable particle time step
dramatically. Note that S, always satisfies Eq. (9).

The results, Egs. (10)-(14) are, as derived, merely sufficient conditions for
stability. To determine necessary conditions, we have expanded Eq. (€) about the
frequency at intersection in order to find the sign of the coupling terms between
thetwo modes. This computation, too lengthy to be reproduced here, indicates that,
for parameters of practical interest, intersection always implies stability. Trus,
Egs. (10)—(14) are also necessary.

In a nonrelativistic problem, therefore, one could choose N4r = 4dx/s and
B = B, to obtain maximal computational speed. In practice one would back off
slightly from each of these values, as they represent marginal stability. Other
considerations, such as proper treatment of electrostatic phenomena, of course,
bear upon the values chosen. The choice of N depends upon the user’s iastes.

I T T
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Fic. 5. Numerical solution of Eq. (6). showing effect of optimal choice of parameters for

N =1 and a nonrelativistic beam.

Figure 5 and 6 indicate typical contrasts. Recall that the light curves tangent as
kmex in Fig. 6 are stable, since the modes are of different I’s.
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Fic. 6. Numerical solution of Eq. (6), showing effect of optimal choice of parameters for
N = 3 and a nonrelativistic bean.

For relativistic velocities, the previous analytic approximations are less reliable,
because the spurious beam mode and the negative light mode lie very near each
other throughout their entire lengths. A numerical study of Eq. (6) was, therefore,
performed using the ultra-relativistic limit v = 1. Results are unpromising. On the
one hand, for N > 1, an instability occurs near kmax/4 even with Eq. (13) and (14)
satisfied. Slight adjustment in S5 together with a substantial reduction in At
ameliorates the problem somewhat, but does not remove it. On the other hand,
for N = 1 and § precisely equal to B, , no instability occurs. Unfortunately, this is
a condition of marginal stability according to Eq. (9). Thus, things otherwise
minor in effect often can drive the system unstable. Indeed, when simulations were
performed under these conditions (N = 1,0 = 1,8 = 8,, 4¢ = 0.94x), spatial
aliasing led to a fast-growing instability. For N = 1 and B < B, , instability arises
near kmax/4, just as for N > 1.

4. MobIriED DISPERSION RELATIONS

Solutions to this apparent dilemma fall into two classes, arranging that the
modes don’t cross and arranging that crossing modes interact stably. A particularly
simple approach of the first sort [13] is to increase the speed of light in the field
equations (i.e., multiply 4r in Eq. (1) by some factor just greater than one) by
enough that the negative light curve and the beaming curve no longer are tangent
near kp,/4. Since the fractional change required in the speed of light is small,
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other stability conditions, Egs. (9)-(14), would be relatively unchanged. Thus, at no
additional computational effort, the numerical Cherenkov instability problem is
solved even for highly relativistic beams. We have, however, not pursued this
approach in detail, because a second appears less drastic yet equally effective.
Two groups {8, 11] have independently reported that defining the elecwric and
magnetic fields on the same spatial mesh as the current density significantiy recuces

instability problems as compared with the staggered mesh scheme of Section .
With this change Eq. (6) becomes

. < sin(k 4x/2) )4 i sin{wN Az/2)
STk 4x2 )~ Tsin(e 412 + I7/N)

l=—L

) [Sin(wélt/Z + lr/N)+ (0 41/ Ax) cos(w A1/2 + Ir|N) sinfk 4x/2) cos{k Aix/2n
sin[( & £o) N 47/2] i

sin(k Ax/2) \? -

sin(k dx/ )} ] e

2 B o LT — /-—~'
) (1= 4 sinttie Axj2)) — (F4 55

Lh
o

/5( sin{w A¢/2 + I=|N)
A2

Equations (7)-(14), derived from Eq. (6), clearly are unchanged. However, an
analysis of the coupling between intersecting modes shows that the interaction of
the negative light curve with the beaming curve is stable provided

At < 24x/v. {(16;

Intersection of the positive light mode with the beaming mode remains wncon-
ditionally unstable.

T I 1 i
N=1 3=00465
V=10 NAI/Az =08

40k

w/wp

’ e
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FiG. 7. Numerical solution of Eq. (13), showing effect of optimal choice of parameters lor
N == 1 and a relativistic beam.
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Stability against the numerical Cherenkov instability, therefore, now requires (10)
and (16) rather than (10) and (11). For very large B, Eq. (10) reduces to

N At < 24x/v, 17)

which dominates Eq. (16). However, such a choice for f severely distorts the light
wave dispersion. A physically more realistic choice is 8 just less than 8, , in which
case Eq. (13) is recovered. Figure 7 provides a numerical solution to Eq. (15) for
N=1,5=0988,,v=10, dx = 0.1, and 4¢ = 0.09. Note that instability near
kmax/4 is no longer a problem.

5. FIELD CALCULATION BY FOURIER TRANSFORM

Next, we consider an unconventional method of determining the electromagnetic
fields, namely by time integration of Maxwell’s equations in Fourier transform
space. With such an approach onehopes to adjust individually the dispersion of each
mode in wavenumber space in such a way as to minimize the effects of finite
differencing. In particular, one wishes to have for light waves w = -k rather than,
for instance, Eq. (7). As we shall see, even though the goal of dispersionless light
curves is achieved only to first order, this field solving technique seems remarkably
free of numerical limitations.

For definiteness let us analyze the algorithm of Haber et al. [14]. Others are
similar [15]. For this differencing scheme field and particle quantities are defined
on the space-time mesh as in Section 4; i.e., as in Fig. 1 (with, of course, N = 1)
but with the fields defined on the same spatial mesh as the currents. Also as before,
currents are determined by standard area weighting, as are the forces on the
particles. However, transverse fields are advanced not as in Eq. (1) or (2) but by

E(t + At) = E(1) cos(k At) + ik x B(z) sin(k 4d¢)

— i:—fJ (r+ %At) sin(k 41),
(18)
B(t + 4t) = B(z) cos(k 4t) — ik x E(¢) sin(k 4t)
47
&

+ fkxJ (t + %Az‘)[l — cos(k 41)].

where E, B, and J are to be understood as the kth element of the spatially Fourier
transformed fields and current density. k is a unit vector along k, which for our
one-dimensional analysis points along the x axis. Finally, fis a form factor intro-
duced to smooth the fields or to modify further their dispersion. Often,
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J=-expl{—k?a?] with a = dx in order to suppress high frequency collisional
effects.

Derivation from Eq. (18) of the cold beam dispersion relation procesds as in
Section 2, but more easily, since no multiple time steps are involved. The resuis is
similar to Eq. (6), with the principle difference that 4x is replaced by 4+ in most
places.

sin{w 4t/2) |2 sin(k A1f2) \* 7 sin(k dx/2) \*
( 41)2 ) ”( 412 ) = k Ax2 )f

~sin(k 41/2) [sin(w At/2) cos(k 4t/2) + v cos{ew 4t/2) sin{k 4 !/2)}
k At2 sinf{w + ki d#/2] J

are
w ~ -tk, {20y

w ~ —ko, i

Note, however, that Eq. (20) requires 47 <. 1 < k. Just as for Eqg. (6) and Eqg. (15,
if At is greater than about 1.5, the light curves are unstable near k = 0. This
constraint can be weakened somewhat by inserting the factor [sin(4#/2)/{4:/ 2P
into f. Even better choices of / for very large 4t are, of course, available,

If the plasma is absent, so that the right side of Eq. (19) vanishes, then Eq. (20}
becomes exact, and there is no Courant condition on the light waves. However, the
addition of plasma reactance just sufficiently disterts the light curves o cause
instabiiity where the modes intersect.

For ease of analysis, assume that v = 0. Then Eg. {(19) reduces to

sin(k dx/2) }* . F sinik At VY

. Ary?
in2 Y — sin? ' “
sin®(ew At/2) = sin®(k 4t/2) + ( 3 ) ( % Ax2 Tz
Expand this expression about k, = 7/4¢, the point of intersection of the light modes
{actually of their time aliases).

y 2 { rC_/t‘
sin¥(w 41/2) Qv1~(l~ M") (T kA

<, 46 (23)
2 2 \\2 2 )g{’(s At}, |4 )

where g is shorthand for twice the coefficient of sin {(k Ar) in Eq. (22). The righ:
side of Eq. (23) attains a maximum of 1 + g¥/4 atw — k 4¢ = g, giving a maximum
instability growth rate g/4r. The width of the instability region in k is

4 kk, ~ 2g]. {24)



516 BRENDAN B. GODFREY

One means of avoiding the instability is setting Amax << k(1 — 2g/7), i.e.,
satisfying the Courant condition

At < Ax(1 — 2g/m). (25)

Since g typically is small near k., one usually has simply 4z < Ax. The second
alternative is to arrange that the mode spacing in &, i.e., 2#/L, where L is the length
of the grid, exceeds the instability width defined in (24). This is best accomplished
by choosing 4¢ not too large, say ~0.2. It is, of course, equally possible to let Ar
be large but make f small near k, . However, one must be cautions, lest the physics
of the problem be distorted.

When v is chosen not equal to zero, stability is more conveniently studied by
numerical solution of Eq. (19). It is found that, although large v aggrevates some-
what the instability, the conclusions of the preceding two paragraphs remain
approximately valid. Figure 8, with /= 1, v = 0.6, 4x = 0.5, and 4¢ = 1.0, is a
particularly severe example. Growth rates for the intersection of the light modes
are of order 0.2.

Also shown in Fig. 8 is the numerical Cherenkov instability due to intersection
of the positive light curve with the beam curve. Growth rates are of order 0.4. For
the present algorithm, this instability is particularly simple to investigate. The
negative light mode and its aliases do not intersect the beam mode for parameters
of practical interest. The positive light mode does not intersect the beam mode,
provided

At < 24x/(1 4+ v). (26)

W/

[ Il 1 1 ! I
% 3

4 5 © 7
ke /ug

Fic. 8. Numerical solution of Eq. (19), illustrating effect of severe violation of both light and
particle Courant conditions. Growth rates are of order 0.2 and 0.4, respectively.
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An analysis of growth rates indicates that violation of (26) results always in
instability. Figure 9, intentionally chosen as close as possible in parameters
(f=1,0v=10, dx = 0.1, 4t = 0.09) to Fig. 7. illustrates stability even in tke
presence of an ultrarelativistic beam. Note that the beam mode and the negative
light mode nearly coincide throughout their entire lengths.

Fic. 9. Numerical solution of Eq. (19), illustrating optimal choice of parameters for £ =1
and a relativistic beam. Compare Fig. 7.

6. ADVECTIVE DIFFERENCING SCHEME

We conclude with an analysis of Langdon’s advective differencing scheme [16].
Cast Maxwell’s equations for E, and B, (similarly for E, and B,} intc the form

Sar’

o
[

(L s DyE, 2 8)= —J,.

With the relevant quantities positioned on the space-time grid as in Fig. i, the
equations are differenced diagonally across the grid; ie.,

(Ey a4 Bz)i“;l,'i+l = (Ey + Ez)i,i

— (JDirrzinn 4t 2%

Note that this requires Ax = 4z, If desired, one could define a separate, finer
spatial mesh for treating the electrostatic field,
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Now, the surprising thing about this scheme is that it is rigorously equivalent to
a special case of the standard procedures described in Section 2, namely with
N =1, =0, and 4x = 4¢. (This can be proven by straightforward manipula-
tions of the corresponding finite difference equations.) Therefore, the improved
stability attributed to codes using this scheme {16, 17] has, in fact, no connection
with the field solving method. Rather, it is due to an unusual algorithm employed
in determining the current.

Most codes compute currents at the half-integral time steps from particle
velocities at that time and from positions obtained by averaging the positions of
each particle from the preceding and following integral time steps. In the present
instance, two separate currents are computed, one from the velocities at the half-
mtegral time and the positions at the preceding integral time step and the other
from the same velocities but with the positions at the following integral time step,
and then averaged to obtain a current at the half-integral time. The effect of this
alternate procedure is to modify the distribution function of Eq. (3) by the factor
cos(kv 41/2). The resulting dispersion relation follows immediately from Eq. (6).

e e
) - ) - )

sin{w 4¢/2) cos(k 4t/2) 4 v cos(w 4t/2) sin(k 4¢/2)
sin[(w + kv) 41/2] )

- cos(kv 4t/2) (29)

For v near unity the right side of Eq. (29) is strongly suppressed at large k. Thus,
we should expect the problems associated with marginal stability described in
Sec. III to be markedly reduced. Indeed, numerical solutions of (29) and actual
computer simulations [17] both demonstrate stability for practical values of A¢
when v & 1. For v small the analysis of Section 5 with 4x = At applies. Again, for
reasonable simulation parameters numerical instabilities are absent.

Of course, this same procedure for determining the current could be included in
any of the differencing schemes discussed, in all cases with some improvement in
stability. However, one might legitimately ask how desirable is a strong k-space
smoothing which depends on particle velocity. The v dependence can be removed
simply by instead computing current in the standard fashion but at spatial cell
edges, then averaging to the cell center. The smoothing now becomes cos(k 4x/2).
However, the question of whether even this smoothing distorts too severely the
physics remains unanswered. Clearly, for some problems such smoothing is
acceptable, for others not. More practical experience is required for a reasonable
evalution of current smoothing to avoid instabilities by either of the two
techniques described in this section.
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7. CONCLUSIONS

We have seen that finite differencing of the particle and transversz field equations
of motion in electromagnetic particle plasma simulation codes gives rise to 2
spurious beaming mode. Additionally, the finite differencing distorts the dispersion
of naturally occurring electromagnetic waves. It is well known that a Couran:
condition on the time step must be satisfied in order to avoid 2 numerical instability
due to crossing of light modes. Here we have found that the intersection of a tight
curve with a spurious beaming curve may also lead to an instability, the numerical
Cherenkov instability, and that to avoid this effect an additional Courant condition
must be imposed. Basically, it states that simulation particles may not travel
further than some fraction of a grid cell per time step.

Within the context of the present analysis, which ignores both thermal and
aliasing effects, there are basically two practical diiferencing schemes for avoiding
these instabilities. One can advance the transveise fields in Fourier-transform
space, thereby minimizing distortion to light modes. Alternatively, cne can add
terms to the finite-differenced Maxwell’s equations which guarantee that the phase
velocity of light waves exceeds unity. {n either case, the nonphysical resonzance of
fast particles with light waves leading to the numerical Cherenkov insiability is
eliminated. The two methods seem about equally effective, so the choice between
them must be based on other considerations. Finally, smootiing of the currents in
space or time increases stability. Extensive experience with this approach is lacking.

Two extensions to the present study suggest themselves. First, improved
differencing schemes should be sought. Second, an aralysis of exisiing schemss §
the effects of spatial aliases and of finite temperatures is desirable

The most ambitious goal in improving differencing schemes is to elivainate th
beaming mode entirely. While difficult, such an advance is perhaps not impossible.
Also valuable is the optimization of algorithms. For instance, one might consider
replacing d*dx%dr®* by d*dx* in Eq. (1) 1o avoid having to invert a tridiagona’
systern at each time step [18]. The codes described in this article are ail of &
“momentum conserving” sort. Modifications to obtain “energv conserving”
algorithms [3] should not prove difficult.

In electrostatic simulations, choice of a ceil size significantly larger thar the
plasma Debye length leads to an instabifity associated with weakly damped zlias
modes. [4, 5]. Similarly, one shouid expect aliases instabilities in electromagnetic
simulations when cell size exceeds the plasma magnetic skin depth, ¢/w, . Ada:-
tionally, the intersection of alias modes can produce instabilities of ‘he sort
described in this article, though generally with smaller growth rates and saturation
ievels. Some evidence for Cherenkov instabilities induced by aliases is mentioned
in Section 3. Generally, thermal velocity spreads have an ameliorating infivence
on instabilities, both physical and nurnerical. Whsather this holds true of the
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Cherenkov instability is, however, unclear, since a high energy tail can make the
Courant condition more difficult to satisfy. (Even a stationary Maxwellian distribu-
tion can be unstable in this way.) It is evident that much useful work can be done
along these lines.
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